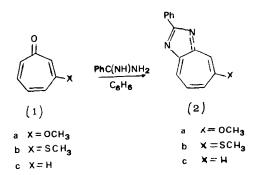
AMIDINATION OF CYCLOHEPTATRIENONES via HYDRIDE REPLACEMENT : A REGIOSPECIFIC SYNTHESIS OF FUNCTIONALIZED 1,3-DIAZAAZULENES

Francesco Del Cima, Marino Cavazza, C. Alberto Veracini, and

Francesco Pietra


(Department of Chemistry, Universita'di Pisa, 56100 Pisa, Italy)

(Received in UK 13 October 1975; accepted for publication 20 October 1975)

Recently new regiospecific syntheses of both aminotropones (via hydride replacement by amines on deactivated cycloheptatrienones¹) and 1,3-diazaazulenes (by amidine condensation with cycloheptatrienones carrying a mobile substituent at C_2^2) have been made available.

It would be interesting if the two above processes could be combined in a novel synthesis of 1,3-diazaazulenes by condensation of amidines with cycloheptatrienones via hydride replacement. We report that this approach has been successful, the new synthesis being complementary to that above² both in regard to regiospecificity and because functionalized 1,3-diazaazulenes can be obtained. Thus, 3-methoxytropone (1a), 0.1 M, and benzamidine, 0.4 M, were

Scheme

refluxed in benzene for 22h to give 5-methoxy-2-phenyl-1,3-diazaazulene $(2a)^+$ as an oil (picrate m.v. 208-209°) in <u>ca</u>. 40% yield (Scheme).

Similarly, 3-methvlthiotropone (<u>1b</u>), 0.03 <u>M</u>, and benzamidine, 0.15 <u>M</u>, in benzene at room temperature for 65 h gave 5-thiomethoxy-2-phenyl-1,3-diazaazu lene (<u>2b</u>)⁺ as an oil (picrate m.p. 196-1°7°) in <u>ca</u>. 50% yield (Scheme).

The above procedure could also be applied to tropone itself, albeit with

a poor yield. In fact, tropone $(\underline{1c})$, 0.2 M, and benzamidine, 0.44 M, in benzene at room temperature for 4 h gave 1,3-diazaazulene $(\underline{2c})^2$ in a <u>ca</u>. 6% yield which could not be raised on prolonged reaction times, whilst with higher reaction temperatures no diazaazulene could be isolated.

Because of the notorious resistance of cycloheptatrienones to carbonyl condensations,³ the above processes are best viewed as a hydride replacement by the amidine (possibly the hydride being abstracted by a cycloheptatrienone molecule because, in our hands, yields never exceeded 50%) followed by a proximity effect-aided carbonyl condensation. There is, in fact, some parallelism with the amination of cycloheptatrienone.¹ Thus, amination of <u>1a</u> at C₇ has already been reported¹ and it has now been found that also <u>1b</u>, 0.02 <u>M</u>, can be aminated at C₇ by piperidine, 1.2 <u>M</u>, in benzene at 100° during 4 h with <u>ca</u>. 50% yield to give 2-piperidino-6-methylthiotropone as an oil (picrate m.p. 175-176°).⁺ Moreover, also tropone (<u>1c</u>), 0.2 <u>M</u>, has been found to react with piperidine, 4 <u>M</u>, in benzene at room temperature to give 2-piperidinotropone⁴ in a <u>ca</u>. 187' yield.

However, such a parallelism breaks down with 3-dimethylaminotropone which, in spite of the close similarity of electronic properties of the dimethylamino group to the methoxy group, which are reflected in the facile amination of 3-dimethylaminotropone at C_7 ,¹ resisted amidination by benzamidine in benzene at 100° during several hours. Clearly a delicate balance of factors govern these multistage reactions.

We are currently investigating the scope of the above processes for natural product synthesis.

ACKNOWLEDGMENTS

Financial support by C.N.R., Roma, is gratefully acknowledged. FOOTNOTES

*Satisfactory elemental analyses, n.m.r., 1.r., mass, and u.v. spectra were obtained. In particular, detailed structural proof was obtained on irradiation at the methyl group.

REFERENCES

- 1) B.Ricciarelli, R. Cabrino, F. Del Cima, C. A. Veracini, and F. Pietra, Chem. Comm., 723 (1974).
- 2) R. Cabrino, B. Ricciarelli, and F. Pietra, Tetrahedron Letters, 3069 (1974).
- 3) F. Pietra, Chem. Rev., 73, 293, (1973).
- 4) G. Biggi, F. Del Cıma, and F. Pietra, J.Amer.Chem.Soc., 95, 7101 (1973)